Annals of Pure and Applied Mathematics

Vol. 17, No. 2, 2018, 241-248
ISSN: 2279-087X (P), 2279-0888(online)
Published on 28 June 2018
www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/apam.v17n2a10

A Size Multipartite Ramsey Problem Involving the Claw Graph

C. J. Jayawardene
Department of Mathematics, University of Colombo, Colombo 3, Sri Lanka
Email: c_jayawardene@yahoo.com

Received 2 May 2018; accepted 26 June 2018
Abstract. Let $K_{j \times s}$ denote a complete balanced multipartite graph consisting of j partite sets of uniform size s. For any two colouring of the edges of a graph $K_{j \times s}$, we say that $K_{j \times s} \rightarrow\left(K_{1,3}, G\right)$, if there exists a copy of $K_{1,3}$ (Claw graph) in the first colour or a copy of G in the second colour. $m_{j}\left(K_{1,3}, G\right)$ is defined as the smallest positive integer s such that $K_{j \times s} \rightarrow\left(K_{1,3}, G\right)$. In this paper we find all such $m_{j}\left(K_{1,3}, G\right)$ for all graphs G on 4 vertices.

Keywords: Ramsey theory, Multipartite Ramsey numbers
AMS Mathematics Subject Classification (2010): 05C55, 05D10

