A Note on Star Critical Ramsey $\left(C_{n}, K_{6}\right)$ Numbers for Large n

C. J. Jayawardene ${ }^{I}$ and W. C. W. Navaratna ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Colombo, Colombo 3, Sri Lanka
${ }^{2}$ Department of Mathematics, The Open University of Sri Lanka, Sri Lanka Email: wcper@ou.ac.lk
${ }^{1}$ Corresponding author. Email: c_jayawardene@yahoo.com

Received 2 June 2019; accepted 22 June 2019

Abstract

The study of Ramsey theory was initiated by the paper on a problem of formal logic written Ramsey. Let K_{n} denote the complete graph on n vertices. For any red/blue colouring of K_{n}, let H_{R} and H_{B} denote the red and blue subgraphs of K_{n} respectively so that $K_{n}=H_{R} \oplus H_{B}$. Let H, G be simple graphs. If there exists a red copy H in H_{R} or a blue copy G in H_{B}, we say that $K_{n} \rightarrow(H, G)$. One branch of Ramsey theory, deals with the exact determination of Ramsey number, $r(H, G)$, defined as the smallest positive integer n such that $K_{n} \rightarrow(H, G)$. For small size graphs H and G, Ramsey number $r(H, G)$ has been studied extensively in the last five decades. In the special case $H=G=K_{n}$ the exact determination of $r\left(K_{n}, K_{n}\right)$, swifts expeditiously from the apparent $r\left(K_{3}, K_{3}\right)=6$, to the unmanageable $r\left(K_{5}, K_{5}\right)$. Currently, the best known lower and upper bounds for $r\left(K_{5}, K_{5}\right)$ are 43 and $48([7,8])$. A closely related recent development in this area of study is the determination of Star critical Ramsey number $r^{*}(H, G)$ defined as the largest integer k such that $K_{r(G, H)-1} \sqcup K_{\{1, k\}} \rightarrow(H, G)$. In this work, we find $r^{*}\left(C_{n}, K_{6}\right)$ when $n \geq 10$.

Keywords: Graph theory, Ramsey theory, Ramsey critical graphs
AMS Mathematics Subject Classification (2010): 05C55, 05C38, 05D10

