Annals of Pure and Applied Mathematics Vol.20, No.1, 2019, xx-xx ISSN: 2279-087X (P), 2279-0888(online) Published on 26 June 2019 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.621v20n1a2

Annals of **Pure and Applied Mathematics**

A Note on Star Critical Ramsey (C_n, K_6) Numbers for Large n

C. J. Jayawardene¹ and W. C. W. Navaratna²

¹Department of Mathematics, University of Colombo, Colombo 3, Sri Lanka ²Department of Mathematics, The Open University of Sri Lanka, Sri Lanka Email: wcper@ou.ac.lk

¹Corresponding author. Email: c_jayawardene@yahoo.com

Received 2 June 2019; accepted 22 June 2019

Abstract. The study of Ramsey theory was initiated by the paper on a problem of formal logic written Ramsey. Let K_n denote the complete graph on n vertices. For any red/blue colouring of K_n , let H_R and H_B denote the red and blue subgraphs of K_n respectively so that $K_n = H_R \bigoplus H_B$. Let H, G be simple graphs. If there exists a red copy H in H_R or a blue copy G in H_B , we say that $K_n \rightarrow (H, G)$. One branch of Ramsey theory, deals with the exact determination of Ramsey number, r(H, G), defined as the smallest positive integer n such that $K_n \rightarrow (H, G)$. For small size graphs H and G, Ramsey number r(H, G) has been studied extensively in the last five decades. In the special case $H = G = K_n$ the exact determination of $r(K_n, K_n)$, swifts expeditiously from the apparent $r(K_3, K_3) = 6$, to the unmanageable $r(K_5, K_5)$. Currently, the best known lower and upper bounds for $r(K_5, K_5)$ are 43 and 48 ([7,8]). A closely related recent development in this area of study is the determination of Star critical Ramsey number $r^*(H, G)$ defined as the largest integer k such that $K_{r(G,H)-1} \sqcup K_{\{1,k\}} \rightarrow (H,G)$. In this work, we find $r^*(C_n, K_6)$ when $n \ge 10$.

Keywords: Graph theory, Ramsey theory, Ramsey critical graphs

AMS Mathematics Subject Classification (2010): 05C55, 05C38, 05D10