See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264959944
On a conjecture involving cycle-complete graph Ramsey numbers

Article in Australasian Journal of Combinatorics • January 2000
CITATIONS
17

Some of the authors of this publication are also working on these related projects:

Project Squares View project

# On a conjecture involving cycle-complete graph Ramsey numbers 

Béla Bollobás<br>Department of Mathematical Sciences<br>Campus Box 526429, University of Memphis<br>Memphis, TN 38152-6429 USA<br>Chula Jayawardene*<br>Department of Mathematics University of Colombo<br>Columbo, Sri Lanka<br>Jiansheng Yang, Huang Yi Ru<br>Department of Mathematics<br>Shanghai University<br>Shanghai 201800, P. R. China<br>\section*{Cecil Rousseau}<br>Department of Mathematical Sciences<br>Campus Box 526429, University of Memphis<br>Memphis, TN 38152-6429 USA<br>Zhang Ke Min<br>Department of Mathematics<br>Nanjing University<br>Nanjing 210093, P. R. China


#### Abstract

It has been conjectured that $r\left(C_{n}, K_{m}\right)=(m-1)(n-1)+1$ for all $(n, m) \neq(3,3)$ satisfying $n \geq m$. We prove this for the case $m=5$.


[^0]
## 1 Introduction

The independence number $\alpha(G)$ of a graph $G$ is the cardinality of its largest independent set. Given a graph $H$ without isolated vertices, the Ramsey number $r\left(H, K_{m}\right)$ is the smallest integer $N$ such that every graph $G$ of order $N$ either contains $H$ as a subgraph or satisfies $\alpha(G) \geq m$. In one of the earliest contributions to graphical Ramsey theory [1], Bondy and Erdős proved the following result for the case where $H \cong C_{n}$, a cycle of length $n$.

Theorem (Bondy, Erdős). For all $n \geq m^{2}-2$,

$$
r\left(C_{n}, K_{m}\right)=(m-1)(n-1)+1
$$

The condition $n \geq m^{2}-2$ is required because of the proof technique, and it has been thought from the beginning that the conclusion is likely to hold under a rather less restrictive hypothesis. The problem of determining for each $m$ the smallest $n$ for which $r\left(C_{n}, K_{m}\right)=(m-1)(n-1)+1$ is among those given in [3], and it is conjectured in [8] and elsewhere that $r\left(C_{n}, K_{m}\right)=(m-1)(n-1)+1$ for all $(n, m) \neq(3,3)$ satisfying $n \geq m$. This is trivial for $m=2$. It was confirmed for $m=3$ in early work on graphical Ramsey theory [4], and recently it was proved for $m=4[9]$. In this paper, we shall prove that the conjecture is true for $m=5$.

Theorem 1. For all $n \geq 5, r\left(C_{n}, K_{5}\right)=4 n-3$.
Note. The condition $n \geq 5$ is best possible. From early work of Clancy [2], it is known that $r\left(C_{4}, K_{5}\right)=14$. There is a unique graph $G$ of order 13 such that $C_{4} \not \subset G$ and $\alpha(G) \leq 4$. This graph is exhibited in [6] and elsewhere.

To reach our goal, it is only necessary to prove that for $n \geq 5$ every $C_{n}$-free graph $G$ of order $4 n-3$ satisfies $\alpha(G) \geq 5$. The fact that $r\left(C_{n}, K_{5}\right) \geq 4 n-3$ follows from the simple example of $G \cong 4 K_{n-1}$, which contains no $C_{n}$ and has independence number $\alpha(G)=4$.

## 2 Proofs

The proof of Theorem 1 will be given through a sequence of lemmas. As usual, $\delta(G)$ denotes the minimum degree, that is $\delta(G)=\min _{v \in V(G)} \operatorname{deg} v$.

Lemma 1. Suppose that for some $n \geq 4$ there exists a graph $G$ of order $4(n-1)+1$ such that $C_{n} \not \subset G$ and $\alpha(G) \leq 4$. Then $\delta(G) \geq n-1$.

Proof. Suppose to the contrary that some vertex $v \in V(G)$ satisfies $\operatorname{deg} v \leq n-2$. Deleting $v$ and its neighborhood, we obtain a graph $H$ of order at least $3(n-1)+1$. By the result in [9] either $C_{n} \subset H$ or $\alpha(H) \geq 4$. Since $C_{n} \not \subset G$, we must assume that latter. But then $v$ together with the appropriate four vertices from $V(H)$ yields a five-element independent set in $G$, a contradiction.

The following lemma is proved in [7].

Lemma 2. Suppose $\delta(G) \geq 4$ and $C_{5} \not \subset G$. Then $\alpha(G) \geq \Delta(G)$.
The following result is given in [5]. In the interest of completeness, it is included here with proof.

Lemma 3. $r\left(C_{5}, K_{5}\right)=17$.
Proof. Suppose there exists a graph $G$ of order 17 such that $C_{5} \not \subset G$ and $\alpha(G) \leq 4$. By Lemma 1 we know that $\delta(G) \geq 4$. Let $u \in V(G)$ be a vertex of degree $\delta(G)$, let $\Gamma$ denote the neighborhood of $u$, and let $W$ denote the set of vertices that remain after $u$ and its neighborhood have been deleted. There are two cases.

Case $(i): \delta(G)=4$. In this case $\langle W\rangle$ is a $C_{5}$-free graph of order 12 with no four-element independent set. All such graphs are found in [7], and they are listed in the Appendix (§3) of this paper for the reader's convenience. Inspection shows that each one contains a $K_{4}$ with at least two vertices of degree three. In particular, for each possibility there is a cycle ( $w_{1}, w_{2}, w_{3}, w_{4}, w_{1}$ ) in which $w_{1}$ and $w_{2}$ have degree three in $\langle W\rangle$. Since $\delta(G)=4, w_{1}$ is adjacent to some vertex in $\Gamma$ and so is $w_{2}$. If $w_{1}$ and $w_{2}$ are each adjacent to $v \in \Gamma$ then $\left(v, w_{1}, w_{4}, w_{3}, w_{2}, v\right)$ is a $C_{5}$ in $G$. If $w_{1}$ and $w_{2}$ are adjacent to $v_{1}$ and $v_{2}$, respectively, where $v_{1} \neq v_{2}$, then $\left(u, v_{1}, w_{1}, w_{2}, v_{2}, u\right)$ is a $C_{5}$ in $G$. In either case, we have obtained the desired contradiction.

Case (ii): $\delta(G) \geq 5$. In this case $\alpha(G) \geq \Delta(G) \geq 5$ by Lemma 2, a contradiction.

Lemma 4. $r\left(C_{6}, K_{5}\right)=21$.
Proof. Suppose there exists a graph $G$ of order 21 such that $C_{6} \not \subset G$ and $\alpha(G) \leq 4$. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{21}\right\}$. By Lemma $1, \delta(G) \geq 5$. Also, $r\left(K_{1}+P_{4}, K_{5}\right)=19$ [5] and $r\left(C_{6}, K_{4}\right)=16$, so we may assume that $v_{1}$ is adjacent to each vertex of the path $\left(v_{2}, v_{3}, v_{4}, v_{5}\right)$, and $I \stackrel{\text { def }}{=}\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\}$ is an independent set. It is easy to check that since $C_{6} \not \subset G$, no vertex in $\left\{v_{6}, v_{7}, \ldots, v_{21}\right\}$ is adjacent to two or more vertices of $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. [If $w$ is adjacent to $v_{2}$ and $v_{3}$ then $\left(w, v_{2}, v_{1}, v_{5}, v_{4}, v_{3}, w\right)$ is a $C_{6}$ in $G$, if $w$ is adjacent to $v_{2}$ and $v_{4}$ then $\left(w, v_{2}, v_{3}, v_{1}, v_{5}, v_{4}, w\right)$ is a $C_{6}$ in $G$, and so on.] Since $\alpha(G) \leq 4$ each vertex of $V(G) \backslash I$ is adjacent to at least one vertex of $I$. In view of these two facts, we may assume $\left\{v_{2} v_{6}, v_{3} v_{7}, v_{4} v_{8}, v_{5} v_{9}\right\} \subset E(G)$. No vertex in $\left\{v_{10}, \ldots, v_{21}\right\}$ is adjacent to two or more vertices of $I$; otherwise, $G$ contains a $C_{6}$. Consider $v_{6}$. Note that $v_{1} v_{6} \notin E(G)$; otherwise $\left(v_{1}, v_{5}, v_{4}, v_{3}, v_{2}, v_{6}, v_{1}\right)$ is a $C_{6}$ in $G$. Since $\delta(G) \geq 5$ we may assume that $v_{6} v_{j} \in E(G)$ for $10 \leq j \leq 13$. Note that $\left\{v_{6}, v_{10}, v_{11}, v_{12}, v_{13}\right\}$ spans a complete subgraph; if $v_{i} v_{j} \notin E(G)$ for some $\{i, j\} \subset\{10,11,12,13\}$, then $\left\{v_{7}, v_{8}, v_{9}, v_{i}, v_{j}\right\}$ is a five-element independent set in $G$. Now the argument can be repeated, except instead of simply containing $K_{1}+P_{4}$, we may assume that the subgraph induced by $\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$ is complete. Then either some $i \leq 5$ makes $\left\{v_{i}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$ a five-element independent set in $G$ or else some $v_{j} \in I$ is adjacent to two or more vertices of $\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$ yielding a $C_{6}$ in $G$, a contradiction.

The following lemma provides tools which will be used repeatedly in the remaining proofs. Parts (a) and (b) were used in [1] and parts (c) and (d) appear in [9].

Lemma 5. Suppose $G$ contains the cycle $\left(u_{1}, u_{2}, \ldots, u_{n-1}, u_{1}\right)$ of length $n-1$ but no cycle of length $n$. Let $X \subseteq V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\}$. Then
(a) No vertex $x \in X$ is adjacent to two consecutive vertices on the cycle.
(b) If $x \in X$ is adjacent to $u_{i}$ and $u_{j}$ then $u_{i+1} u_{j+1} \notin E(G)$.
(c) If $x \in X$ is adjacent to $u_{i}$ and $u_{j}$ then no vertex $x^{\prime} \in X$ is adjacent to both $u_{i+1}$ and $u_{j+2}$.
(d) Suppose $\alpha(G)=m-1$ where $m \leq(n+3) / 2$, and $\left\{x_{1}, x_{2}, \ldots, x_{m-1}\right\} \subset X$ is an ( $m-1$ )-element independent set. Then no member of this set is adjacent to $m-2$ or more vertices on the cycle.

Proof. (a) Obvious.
(b) If $x \in X$ is adjacent to $u_{i}$ and $u_{j}$ where $u_{i+1} u_{j+1} \in E(G)$ then

$$
\left(u_{i}, x, u_{j}, u_{j-1}, \ldots, u_{i+1}, u_{j+1}, \ldots, u_{i-1}, u_{i}\right)
$$

is a $C_{n}$ in $G$, a contradiction.
(c) If $x$ is adjacent to $u_{i}$ and $u_{j}$ and $x^{\prime}$ is adjacent to $u_{i+1}$ and $u_{j+2}$ then

$$
\left(u_{i}, x, u_{j}, u_{j-1}, \ldots, u_{i+1}, x^{\prime}, u_{j+2}, \ldots, u_{i-1}, u_{i}\right)
$$

is a $C_{n}$ in $G$, a contradiction.
(d) First notice as did Bondy and Erdős that no $x \in X$ can be adjacent to $m-1$ or more vertices of the cycle. For, if $1 \leq j_{1}<j_{2}<\cdots<j_{m-1} \leq n-2$ and $x \in X$ satisfies $x u_{j} \in E(G)$ for all $j \in J=\left\{j_{1}, j_{2}, \ldots, j_{m-1}\right\}$, then in view of (a) and (b) we see that $\{x\} \cup\left\{u_{j+1} \mid j \in J\right\}$ is an $m$-element independent set. Now suppose that $1 \leq k_{1}<k_{2}<\cdots<k_{m-2} \leq n-3$ and $x \in\left\{x_{1}, x_{2}, \ldots, x_{m-1}\right\}$ satisfies $x u_{k} \in E(G)$ for all $k \in K=\left\{k_{1}, k_{2}, \ldots, k_{m-2}\right\}$. [The condition $n \geq 2 m-3$ ensures that there is such an indexing of the vertices on the cycle.] By what was just proved, $x$ is not adjacent to any more vertices on the cycle, in particular $x$ is not adjacent to $v_{s}$ where $s=k_{m-2}+2$. But $v_{s}$ is adjacent to some $x^{\prime} \in\left\{x_{1}, x_{2}, \ldots, x_{m-1}\right\}$ since otherwise there would be an $m$-element independent set. By (b) we know that $\left\{u_{k+1} \mid k \in K\right\}$ is an independent set, and by (c) no member of this set is adjacent to $x^{\prime}$. It follows that $\left\{x, x^{\prime}\right\} \cup\left\{u_{k+1} \mid k \in K\right\}$ is an $m$-element independent set, a contradiction.

The Standard Configuration. To prove that $r\left(C_{n}, K_{5}\right)=4(n-1)+1$ for $n \geq 7$, we shall in each case assume to the contrary that there exists a graph $G$ of order $4(n-$ 1) +1 such that $C_{n} \not \subset G$ and $\alpha(G) \leq 4$. By Lemma $1, \delta(G) \geq n-1$. By induction, $r\left(C_{n-1}, K_{5}\right)=4(n-2)+1$. Hence we may assume that $\left(u_{1}, u_{2}, \ldots, u_{n-1}, u_{1}\right)$ is a cycle of length $n-1$ in $G$ and, disjoint from this cycle, there is a four-element independent set $I=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $C=V\left(C_{n-1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ denote the set of vertices on the cycle, and let $W=V(G) \backslash(C \cup I)=\left\{w_{1}, w_{2}, \ldots, w_{3 n-6}\right\}$ denote the set of vertices disjoint from $C \cup I$. Since $\alpha(G) \leq 4$ each vertex in $C$ is
adjacent to at least one vertex in $I$. In view of part (d) of Lemma 5 (with $m=5$ ), no member of $I$ is adjacent to 3 or more vertices on the cycle. Thus the set of edges $E(C, I)=\{u v \mid u \in C, v \in I\}$ satisfies $|C| \leq|E(C, I)| \leq 8$. If $v \in I$ is adjacent to $u_{i}$ and $u_{j}$ and these two vertices have no other neighbors in $I$ then $u_{i} u_{j} \in E(G)$; otherwise, $u_{i}, u_{j}$ and the three members of $I \backslash\{v\}$ yield a five-element independent set. Note that each vertex in $I$ is adjacent to at least $n-3$ vertices in $W$. Since $4(n-3)>3 n-6$, we may assume (if needed) that there are two vertices in $I$ that are commonly adjacent to some vertex $w \in W$. The structure just described will be called the standard configuration.

Lemma 6. $r\left(C_{7}, K_{5}\right)=25$.
Proof. Assume the standard configuration. Then $6 \leq|E(C, I)| \leq 8$. The proof is divided into two parts. The first part deals with the possibility $7 \leq|E(C, I)| \leq 8$ and the second part with $|E(C, I)|=6$.

Part $I: 7 \leq|E(C, I)| \leq 8$. Note that each vertex in $I$ is adjacent to at least one vertex in $C$. If not, then some other vertex in $I$ is adjacent to at least $\lceil 7 / 3\rceil=3$ vertices in $C$, contradicting part (d) of Lemma 5 (with $m=5$ ). In case (i) below, we use the prerogative of assuming that $v_{1}$ and $v_{2}$ are commonly adjacent to some $w \in W$. We may assume that $v_{1}$ is adjacent to two vertices in $C$. There are two cases.

Case (i): $v_{1}$ is adjacent to $u_{1}$ and $u_{3}$. Note that $u_{2} u_{4} \notin E(G)$ and $u_{2} u_{6} \notin E(G)$, both by part (b) of Lemma 5 . Also $u_{4} v_{2} \notin E(G)$; otherwise ( $\left.w, v_{1}, u_{1}, u_{2}, u_{3}, u_{4}, v_{2}, w\right)$ is a $C_{7}$ in $G$. In the same way, $u_{6} v_{2} \notin E(G)$. We now make two claims.

Claim 1: $u_{5} v_{2} \notin E(G)$. Suppose $u_{5} v_{2} \in E(G)$. Then $u_{2} v_{2} \notin E(G)$ by part (c) of Lemma 5 and $u_{4} u_{6} \notin E(G)$ as well; otherwise ( $w, v_{1}, u_{1}, u_{6}, u_{4}, u_{5}, v_{2}, w$ ) is a $C_{7}$ in $G$. In this case, $\left\{u_{2}, u_{4}, u_{6}, v_{1}, v_{2}\right\}$ is a five-element independent set in $G$, a contradiction.
$\operatorname{Claim} 2: u_{2} v_{2} \in E(G)$. Suppose $u_{2} v_{2} \notin E(G)$. Then $u_{1} u_{6} \in E(G)$ since otherwise $\left\{u_{2}, u_{4}, u_{6}, v_{1}, v_{2}\right\}$ is a five-element independent set in $G$. Then $u_{1} v_{2} \notin E(G)$; otherwise ( $w, v_{1}, u_{3}, u_{4}, u_{6}, u_{1}, v_{2}, w$ ) is a $C_{7}$ in $G$. In the same way $u_{3} v_{2} \notin E(G)$. Then $u v_{2} \notin E(G)$ for all $u \in C$, a contradiction.

In view of part (a) of Lemma 5 and previously established facts, this means that $v_{2}$ is adjacent to precisely one vertex in $C$. Hence if $|E(C, I)|=8$, we have already reached a contradiction. Now we may assume that $u_{4}$ and $u_{6}$ are both adjacent to $v_{3}$ and $u_{5}$ is adjacent to $v_{4}$. Then $u_{4} u_{6} \in E(G)$; otherwise $\left\{u_{2}, u_{4}, u_{6}, v_{1}, v_{4}\right\}$ is a five-element independent set in $G$. Note that $u_{2} v_{4} \notin E(G)$ by part (c) of Lemma 5. Also, $u_{1} v_{4} \notin E(G)$ and $u_{3} v_{4} \notin E(G)$, both by part (b) of Lemma 5. It follows that $v_{4}$ is adjacent to precisely one vertex on the cycle, so $|E(C, I)|=2+1+2+1=6$, a contradiction. This completes the proof in case (i).

Case (ii): $v_{1}$ is adjacent to $u_{1}$ and $u_{4}$. In this case, we do not make use of the assumption that $v_{1}$ and $v_{2}$ are commonly adjacent to $w \in E(G)$. This means that the three vertices $v_{2}, v_{3}, v_{4}$ are on an equal footing. A simple argument, sketched below, shows that a second vertex, which we may take to be $v_{2}$, is adjacent to $u_{2}$ and $u_{5}$ or to $u_{3}$ and $u_{6}$. [If we deny this conclusion and use part (c) of Lemma 5 , we find that if $v \in\left\{v_{2}, v_{3}, v_{4}\right\}$ is adjacent to two vertices in $C$, then one of those
vertices must be $u_{1}$ or $u_{4}$. For each such $v$ there is an extra edge in $E(C, I)$ over the six that are required by the fact that each vertex in $C$ is adjacent to at least one vertex in $I$. Suppose there are $k$ such vertices. By the observation just made, $|E(C, I)| \geq 6+k$. On the other hand, the appropriate degree sum for vertices in $I$ yields $|E(C, I)|=2(k+1)+(3-k)=5+k$.] Hence there are two subcases.

Subcase (a): $v_{2}$ is adjacent to $u_{2}$ and $u_{5}$. Then $u_{3} u_{6} \notin E(G)$ by part (b) of Lemma 5. For $v \in\left\{v_{3}, v_{4}\right\}$, either $u_{3} v \in E(G)$ or $u_{6} v \in E(G)$; otherwise $\left\{u_{3}, u_{6}, v_{1}, v_{2}, v\right\}$ is a five-element independent set in $G$. If $u_{3} v \in E(G)$ then $u_{1} v \notin$ $E(G)$ and $u_{4} v \notin E(G)$, by parts (c) and (a), respectively, of Lemma 5. If $u_{6} v \in E(G)$ then $u_{1} v \notin E(G)$ and $u_{4} v \notin E(G)$ by parts (a) and (c), respectively, of Lemma 5 . In view of this, $\left\{u_{1}, u_{4}, v_{2}, v_{3}, v_{4}\right\}$ is a five-element independent set in $G$, a contradiction.

Subcase (b): $v_{2}$ is adjacent to $u_{3}$ and $u_{6}$. The proof is similar to that of subcase (a). First $u_{2} u_{5} \notin E(G)$ by part (b) of Lemma 5. Then for $v \in\left\{v_{3}, v_{4}\right\}$ either $u_{2} v \in E(G)$ or $u_{5} v \in E(G)$. Finally, for $u_{1} v \notin E(G)$ and $u_{4} v \notin E(G)$ for $v \in\left\{v_{3}, v_{4}\right\}$, so $\left\{u_{1}, u_{4}, v_{1}, v_{3}, v_{4}\right\}$ is a five-element independent set in $G$, a contradiction. This completes the proof in Part I.

Part $I I:|E(C, I)|=6$. In this part, each vertex in $C$ is adjacent to precisely one vertex in $I$, so if $v \in I$ is adjacent to $u_{i}$ and $u_{j}$ then $u_{i} u_{j} \in E(G)$. Do not assume that $v_{1}$ and $v_{2}$ are both adjacent to $w \in W$, only that some pair $v_{i}, v_{j} \in I$ have this property. Without loss of generality, $v_{1}$ is adjacent to two vertices in $C$. There are two cases.

Case (i): $v_{1}$ is adjacent to $u_{1}$ and $u_{4}$. Then we may assume that $u_{2}$ is adjacent to $v_{2}$. In view of parts (a), (b), and (c) of Lemma 5 and the fact that each vertex in $C$ is adjacent to precisely one vertex in $I$, it is clear that $u_{i} v_{2} \notin E(G)$ for $i \neq 2$. In the same way, we may assume that $u_{3}$ is adjacent to $v_{3}$ and then find that $u_{i} v_{3} \notin E$ for $i \neq 3$. Then we may assume that $u_{5}$ is adjacent to $v_{4}$. Finally, however, $v_{6}$ cannot be adjacent to any vertex in $I$, a contradiction.

Case (ii): $v_{1}$ is adjacent to $u_{1}$ and $u_{3}$. Then $u_{1} u_{3} \in E(G)$. We may assume that $u_{2}$ is adjacent to $v_{2}$. As before, we then find that $u_{i} v_{2} \notin E(G)$ for $i \neq 2$. Then, in the only acceptable configuration, $u_{4}$ and $u_{6}$ are both adjacent to $v_{3}, u_{4} u_{6} \in E(G)$, $u_{5} v_{4} \in E(G)$ and $u_{i} v_{4} \notin E(G)$ for $i \neq 5$. Now we use the fact that there are two vertices $v_{i}, v_{j} \in I$ that are both adjacent to $w \in W$. If $v_{1}$ and $v_{3}$ are both adjacent to $w$ then $\left(w, v_{1}, u_{1}, u_{2}, u_{3}, u_{4}, v_{3}, w\right)$ is a $C_{7}$ in $G$. If $v_{1}$ and $v_{4}$ are both adjacent to $w$ then $\left(w, v_{1}, u_{1}, u_{3}, u_{4}, u_{5}, v_{4}, w\right)$ is a $C_{7}$ in $G$. If $v_{2}$ and $v_{4}$ are adjacent to $w$ then $\left(w, v_{2}, u_{2}, u_{3}, u_{4}, u_{5}, v_{4}, w\right)$ is a $C_{7}$ in $G$. Hence, by symmetry, we may assume that $v_{1}$ and $v_{2}$ are both adjacent to $w \in W$. Let $Z=\left\{u_{1}, \ldots, u_{6}, v_{1}, \ldots, v_{4}, w\right\}$ and $Z^{\prime}=V(G) \backslash Z$.

As one may readily verify, for each vertex $z \in Z \backslash\left\{v_{1}, v_{2}, w\right\}$ there is a path of length six from $w$ to $z$. Also for each $z \in Z \backslash\left\{u_{4}, u_{6}, v_{4}\right\}$ there is a path of length six from $u_{5}$ to $z$. Since $C_{7} \not \subset G$, the degrees of $u_{5}, v_{2}, v_{3}, w$ in $\langle Z\rangle_{G}$ are $3,2,2,2$, respectively. Since $\delta(G) \geq 6$ there are at least $3+4+4+4=15$ edges joining $S \stackrel{\text { def }}{=}\left\{u_{5}, v_{2}, v_{3}, w\right\}$ and $Z^{\prime}$. Since $\left|Z^{\prime}\right|=14$, there must be two vertices in $S$ that are adjacent to the same $w^{\prime} \in Z^{\prime}$. Finally, the following path system shows that any two
vertices in $S$ are joined by a path of length five in $\langle Z\rangle_{G}$ :

$$
\begin{array}{ll}
\left(u_{5}, u_{4}, u_{3}, u_{1}, u_{2}, v_{2}\right), & \left(u_{5}, u_{4}, u_{3}, u_{1}, u_{6}, v_{3}\right), \\
\left(u_{5}, u_{4}, u_{3}, u_{2}, v_{2}, w\right), & \left(v_{2}, u_{2}, u_{1}, u_{3}, u_{4}, v_{3}\right), \\
\left(v_{2}, u_{2}, u_{1}, u_{3}, v_{1}, w\right), & \left(v_{3}, u_{4}, u_{3}, u_{2}, v_{2}, w\right) .
\end{array}
$$

Since there are two vertices in $S$ that are both adjacent to $w^{\prime} \in Z^{\prime}$, this gives a $C_{7}$ in $G$, a contradiction.

Lemma 7. $r\left(C_{8}, K_{5}\right)=29$.
Proof. Assume the standard configuration. The edge count $7=|C| \leq|E(C, I)| \leq 8$ gives two cases for consideration.

Case (i): $|E(C, I)|=7$. In this case, each vertex in $C$ is adjacent to exactly one vertex in $I$, one (exceptional) vertex in $I$ is adjacent to only one vertex in $C$, and the other three are each adjacent to two vertices on the cycle. We may assume that $v_{1}$ is not the exceptional vertex. Let $N$ denote the neighbors of $v_{1}$ in $C$. By symmetry, there are two subcases.

Subcase (a): $N=\left\{u_{1}, u_{3}\right\}$. Then $u_{1} u_{3} \in E(G)$, and we may assume that $u_{2}$ is adjacent to $v_{2}$. It is easily checked that there is a path of order eight joining $v_{2}$ and $u_{i}$ for $i=4,5,6,7$. Since there would be a $C_{8}$ otherwise, we may assume that $u_{i} v_{2} \notin E(G)$ for $i=1,3,4,5,6,7$, so $v_{2}$ must be the exceptional vertex. Then we may assume that $v_{3}$ is adjacent to $u_{4}$ and $u_{6}$, and that $v_{4}$ is adjacent to $u_{5}$ and $u_{7}$, so $u_{5} u_{7} \in E(G)$. But this violates part (b) of Lemma 5 .

Subcase (b): $N=\left\{u_{1}, u_{4}\right\}$. Then $u_{1} u_{4} \in E(G)$, and we may assume that that $u_{2}$ is adjacent to $v_{2}$ and $u_{3}$ is adjacent to $v_{3}$. Note that there is a path of order eight joining $v_{i}$ and $u_{j}$ for $i=2,3$ and $j=5,6,7$. But $v_{2}$ and $v_{3}$ are not both exceptional, so we have a contradiction.

Case (ii): $|E(C, I)|=8$. In this case, one (exceptional) vertex in $C$ is adjacent to two vertices in $I$, and each vertex in $I$ is adjacent to two vertices in $C$. As noted earlier, we may assume that there is a vertex $w \in W$ that is adjacent to both $v_{1}$ and $v_{2}$. Again let $N$ denote the neighbors of $v_{1}$ in $C$.

Subcase (a): $N=\left\{u_{1}, u_{3}\right\}$. Note that there is a path of order eight joining $v_{2}$ and $u_{i}$ for $i=4,5,6,7$, so $v_{2}$ cannot be adjacent to $u_{4}, u_{5}, u_{6}$ or $u_{7}$. Also $v_{2}$ cannot be adjacent to $u_{1}$ and $u_{2}$ or to $u_{2}$ and $u_{3}$ by part (a) of Lemma 5 . Finally, $v_{2}$ cannot be adjacent to both $u_{1}$ and $u_{3}$ since there is only one exceptional vertex in $C$. Hence there do not exist two vertices on the cycle that can serve as neighbors of $v_{2}$, a contradiction.

Subcase (b): $N=\left\{u_{1}, u_{4}\right\}$. Note that there is a path of order eight joining $v_{2}$ and $u_{i}$ for $i=1,4,5,7$. Hence we may assume that $v_{2}$ is adjacent to $u_{2}$ and $u_{6}$. However, this violates part (c) of Lemma 5.

Since a contradiction arises in each subcase, the lemma is proved.
Lemma 8. $r\left(C_{9}, K_{5}\right)=33$.
Proof. Assume the standard configuration. The edge count $8=|C| \leq|E(C, I)| \leq 8$ requires each vertex in $C$ to be adjacent to exactly one vertex of $I$ and each vertex in
$I$ to be adjacent to exactly two vertices in $C$. We may assume that there is a vertex $w \in W$ that is adjacent to both $v_{1}$ and $v_{2}$. Let $N=\left\{u_{i}, u_{j}\right\}$ denote the neighbors of $v_{1}$ on the cycle. Since there is no five-element independent set, $u_{i} u_{j} \in E(G)$. By symmetry, there are three cases.

Case (i): $N=\left\{u_{1}, u_{3}\right\}$. It is easily checked that for $4 \leq i \leq 8$ there is a path of order seven joining $v_{1}$ and $u_{i}$. The paths $\left(v_{1}, u_{1}, u_{8}, u_{7}, u_{6}, u_{5}, u_{4}\right)$ and ( $v_{1}, u_{3}, u_{1}, u_{8}, u_{7}, u_{6}, u_{5}$ ) serve for $i=4$ and $i=5$, respectively, and their counterparts by symmetry take care of $i=8$ and $i=7$. The required path for $i=6$ may be taken to be $\left(v_{1}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)$. Hence there do not exist two vertices on the cycle that can serve as neighbors of $v_{2}$.

Case (ii): $N=\left\{u_{1}, u_{4}\right\}$. In this case for $5 \leq i \leq 8$ there is a path of order seven joining $v_{1}$ and $u_{i}$. The paths ( $v_{1}, u_{4}, u_{1}, u_{8}, u_{7}, u_{6}, u_{5}$ ) and ( $v_{1}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ ) serve for $i=5$ and $i=6$, respectively, and symmetric counterparts take care of $i=8$ and $i=7$. Therefore $v_{2}$ cannot be adjacent to any of the vertices $u_{5}, u_{6}, u_{7}, u_{8}$. By part (a) of Lemma $5, v_{2}$ cannot be adjacent to $u_{2}$ and $u_{3}$. Hence there do not exist two vertices on the cycle that can serve as the neighbors of $v_{2}$.

Case (iii): $N=\left\{u_{1}, u_{5}\right\}$. In this case, there is a path of order seven joining $v_{1}$ to $u_{i}$ for $i=2,4,6,8$, so the neighbors of $v_{2}$ on the cycle must be $u_{3}$ and $u_{7}$. Without loss of generality, $u_{2}$ is adjacent to $v_{3}$, and by symmetry the neighbors of $v_{3}$ on the cycle are either $u_{2}$ and $u_{4}$ or $u_{2}$ and $u_{6}$. In the first instance, $u_{2} u_{4} \in E(G)$ and $\left(v_{1}, u_{1}, u_{8}, u_{7}, v_{2}, u_{3}, u_{2}, u_{4}, u_{5}, v_{1}\right)$ is a $C_{9}$ in $G$. In the second, $u_{2} u_{6} \in E(G)$ and $\left(v_{1}, u_{1}, u_{8}, u_{7}, u_{6}, u_{2}, u_{3}, u_{4}, u_{5}, v_{1}\right)$ is a $C_{9}$ in G.

Since a contradiction arises in each case, the proof is complete.
Completion of the proof of Theorem 1. For $n \geq 10$, the edge count $n-1=|C| \leq$ $|E(C, I)| \leq 8$ gives an immediate contradiction.

## 3 Appendix - Possible Induced Subgraphs $\langle W\rangle$ for Case (i) in Lemma 3

Here we give the promised collection of graphs of order 12 that contain no $C_{5}$ and have independence number 3.

Proposition. If $G$ is a graph of order twelve such that $C_{5} \not \subset G$ and $\alpha(G)=3$ then $G$ is isomorphic to $3 K_{4}$ or to one of the five graphs shown below, obtained by adding appropriate edges to $3 K_{4}$.


FIGURE 1. Graphs of order twelve with $C_{5} \not \subset G$ and $\alpha(G)=3$.

## References

[1] J. A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, J. Combin. Theory Ser. B, 14 (1973), 46-54.
[2] M. Clancy, Some small Ramsey numbers, J. Graph Theory, 1 (1977), 89-91.
[3] R. J. Faudree, C. C. Rousseau, and R. H. Schelp, Problems in graph theory from Memphis, in: The Mathematics of Paul Erdös, II, R. L. Graham and J. Nešetřil, eds., Springer-Verlag, Berlin, 1997, 7-26.
[4] R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math., 8 (1974), 313-329.
[5] G. R. T. Hendry, Ramsey numbers for graphs with five vertices, J. Graph Theory, 13 (1989), 245-248.
[6] C. J. Jayawardene and C. C. Rousseau, An upper bound for the Ramsey number of a quadrilateral versus a complete graph on seven vertices, Cong. Numer., 130 (1998), 175-188.
[7] C. J. Jayawardene and C. C. Rousseau, The Ramsey number for a cycle of length five vs. a complete graph of order six, submitted.
[8] R. H. Schelp and R. J. Faudree, Some problems in Ramsey theory, in: Theory and Applications of Graphs, Y. Alavi and D. R. Lick, eds., Lecture Notes in Math. 642, Springer-Verlag, Berlin, 1978, 500-515.
[9] Yang Jian Sheng, Huang Yi Ru and Zhang Ke Min, The value of the Ramsay number $R\left(C_{n}, K_{4}\right)$ is $3(n-1)+1(n \geq 4)$, Australas. J. Combin., 20 (1999), 205-206.


[^0]:    *This author is currently pursuing post-doctoral studies under Prof. Bollobás

