Annals of Pure and Applied Mathematics Vol. 16, No. 2, 2018, 437-441 ISSN: 2279-087X (P), 2279-0888(online) Published on 24 March 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v16n2a21

Annals of **Pure and Applied Mathematics**

On a Ramsey Problem Involving the 3-Pan Graph

Chula Jayawardene

Department of Mathematics, University of Colombo, Sri Lanka Email: <u>c_jayawardene@yahoo.com</u>

Received 20 February 2018; accepted 21 March 2018

Abstract. Let K_s and $K_{j\times s}$ denote the complete graph on *s* vertices and the complete multipartite balanced graph having *j* partite sets (where $j \ge 3$) of size *s* respectively. For any two graphs say *G*, *H*, we say that $K_s \rightarrow (H,G)$, if for any red/blue coloring of K_s , given by $K_s = H_R \bigoplus H_B$, there exists a red copy of a *H* in H_R or a blue copy *G* in H_B . In accordance with the same notation, we also say that $K_{j\times s} \rightarrow (H,G)$, if for any red/blue coloring of $K_{j\times s}$, given by $K_{j\times s} = H_R \bigoplus H_B$, there exists a red copy of a *H* in H_R or a blue copy *G* in H_B . In accordance with the same notation, we also say that $K_{j\times s} \rightarrow (H,G)$, if for any red/blue coloring of $K_{j\times s}$, given by $K_{j\times s} = H_R \bigoplus H_B$, there exists a red copy of a *H* in H_R or a blue copy *G* in H_B . The balanced multipartite Ramsey number $m_j(G,H)$ is defined as the smallest positive number *s* such that that $K_{j\times s} \rightarrow (H,G)$. There are 11 non-isomorphic graphs *G* on 4 vertices, out of which 5 graphs *G* are connected and the others are disconnected. In this paper we exhaustively find $m_j(P,G)$ for all of the 11 non-isomorphic graphs *G* on 4 vertices where *P* denotes the 3-pan graph (paw graph) given by $K_{1,3}+e$.

Keywords: Graph theory, Ramsey theory

AMS Mathematics Subject Classification: 05C55, 05D10