Mathematics

On a Ramsey Problem Involving the 3-Pan Graph

Chula Jayawardene

Department of Mathematics, University of Colombo, Sri Lanka
Email: c jayawardene@yahoo.com
Received 20 February 2018; accepted 21 March 2018

Abstract

Let K_{s} and $K_{j \times s}$ denote the complete graph on s vertices and the complete multipartite balanced graph having j partite sets (where $j \geq 3$) of size s respectively. For any two graphs say G, H, we say that $K_{s} \rightarrow(H, G)$, if for any red/blue coloring of K_{s}, given by $K_{\mathrm{s}}=H_{R} \oplus H_{B}$, there exists a red copy of a H in H_{R} or a blue copy G in H_{B}. In accordance with the same notation, we also say that $K_{j \times s} \rightarrow(H, G)$, if for any red/blue coloring of $K_{j \times s}$, given by $K_{j \times s}=H_{R} \oplus H_{B}$, there exists a red copy of a H in H_{R} or a blue copy G in H_{B}. The balanced multipartite Ramsey number $m_{j}(G, H)$ is defined as the smallest positive number s such that that $K_{j \times s} \rightarrow(H, G)$. There are 11 non-isomorphic graphs G on 4 vertices, out of which 5 graphs G are connected and the others are disconnected. In this paper we exhaustively find $m_{j}(P, G)$ for all of the 11 non-isomorphic graphs G on 4 vertices where P denotes the 3-pan graph (paw graph) given by $K_{l, 3}+e$.

Keywords: Graph theory, Ramsey theory
AMS Mathematics Subject Classification: 05C55, 05D10

