International Conference on Graph Theory and Information Security

On Size Multipartite Ramsey Numbers for Stars versus Cycles

Anie Lusiani ${ }^{\text {a }}$, Syafrizal Sy ${ }^{\text {b }}$, Edy Tri Baskoro ${ }^{\text {a }}$, Chula Jayawardene ${ }^{\text {c }}$
${ }^{a}$ Combinatorial Mathematics Research Group Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
${ }^{b}$ Departement of Mathematics Andalas University, Kampus Unand Limau Manis Padang 25163, Indonesia
${ }^{c}$ Departement of Mathematics, University of Colombo, Colombo Sri Lanka

Abstract

For given two graphs G_{1} and G_{2}, and integer $j \geq 2$, the size multipartite Ramsey numbers $m_{j}\left(G_{1}, G_{2}\right)$ is the smallest integer t such that every factorization of the graph $K_{j \times t}:=F_{1} \oplus F_{2}$ satisfies the following condition: either F_{1} contains G_{1} or F_{2} contains G_{2}. In this paper, we determine $m_{j}\left(S_{m}, C_{n}\right)$ for $j, m, n \geq 3$ where S_{m} is a star on m vertices and C_{n} is a cycle on n vertices. © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Organizing Committee of ICGTIS 2015 Keywords: Cycle, size multipartite Ramsey number, star. 2010 MSC: 05D10, 05C55

[^0]
[^0]: E-mail address: anielusiani@ student.itb.ac.id,syafrizalsy@fmipa.unand.ac.id

