Star-Critical Ramsey Numbers for Cycles Versus the Complete Graph on 5 Vertices

C.J. Jayawardene
Department of Mathematics, University of Colombo
Colombo 3, Sri Lanka
Email: c_jayawardene@yahoo.com

Received 18 December 2018; accepted 30 December 2018

Abstract

Let G, H and K represent three graphs without loops or parallel edges and n represent an integer. If any red/blue coloring of the edges of K there exists a red copy of G or a blue copy of H, we say that $K \rightarrow(G, H)$. Let K_{n} represent a complete graph on n vertices, C_{n} a cycle on n vertices and $S_{n}=K_{1, n}$ a star on $n+1$ vertices. The Ramsey number $r(G, H)$ is defined as $\min \left\{n \mid K_{n} \rightarrow(G, H)\right\}$. Star-critical Ramsey number $r_{:}(G, H)$ is defined as $\min \left\{k \mid K_{r}(G, H)-1 \sqcup K_{1, k} \rightarrow(G, H)\right\}$. We show that $r_{*}\left(C_{4}, K_{5}\right)=13$ and for $n>4, r_{*}\left(C_{n}\right.$, $\left.K_{5}\right)=3 n-1$.

Keywords: Ramsey numbers, Star-critical Ramsey numbers
AMS Mathematics Subject Classification (2010):05C55, 05D10, 05 C 38

