RESEARCH ARTICLE

The size, multipartite Ramsey numbers for C_{3} versus all graphs up to 4 vertices

Chula Jayawardene* and Lilanthi Samarasekara
Department of Mathematics, Faculty of Science, University of Colombo, Colombo 03.

Abstract

In this paper we restrict our attention to finite graphs containing no loops or multiple edges. The multipartite graph $K_{j \times s}(j \geq 3)$ consisting of j partite sets of uniform size s is defined as $V\left(K_{j \times s}\right)=\left\{v_{m n} \mid m \in\{1,2, \ldots, j\}\right.$ and $\left.n \in\{1,2, \ldots, s\}\right\}$ and $E\left(K_{j \times \infty}\right)=\left\{v_{m n} v_{k l} \mid m, k \in\{1,2, \ldots, j\}\right.$ and $n, l \in\{1,2, \ldots, s\}$ where $k \neq m\}$. The set of vertices of the $m^{\text {th }}$ partite set is denoted by $\left\{v_{m n} \mid n \in\{1,2, \ldots, s\}\right\}$. If for every two-colouring (red and blue) of the edges of a graph K, there exists a copy of H in the first colour (red) or a copy of G in the second colour (blue), we write $K \rightarrow(H, G)$. Given two simple graphs H and G, the Ramsey number $r(H, G)$ is defined as the smallest positive integer s such that $K_{s} \rightarrow(H, G)$ and along the same line of reasoning, the multipartite Ramsey number $m_{j}(H, G)$ is defined as the smallest positive integer s such that $K_{j \times s} \rightarrow(H, G)$. Thus, multipartite Ramsey number $m_{j}\left(C_{3}, G\right)$ is defined as the smallest positive integer s such that any red-blue colouring of $K_{i \times s}$ contains a red C_{3} or a blue G. Since only a few multipartite Ramsey numbers for pairs of graphs have been found so far, in this paper we find all such multipartite Ramsey numbers $m_{j}\left(C_{3}, G\right)$ when G is any graph up to 4 vertices.

Keywords: Combinatorics, graph theory, mathematics, multipartite Ramsey numbers, Ramsey theory.

[^0]
[^0]: * Corresponding author (c_jayawardene@yahoo.com)

