How Ramsey theory can be used to solve Harary's problem for $\boldsymbol{K}_{2, k}$

Chula Jayawardene
Department of Mathematics
University of Colombo, Colombo
Sri Lanka.
c_jayawardene@yahoo.com
Cecil C. Rousseau and Béla Bollobás
Department of Mathematics
University of Memphis
U.S.A.

January 8, 2019

Abstract

Harary's conjecture $r\left(C_{3}, G\right) \leqslant 2 q+1$ for every isolated-free graph G with q edges was proved independently by Sidorenko and Goddard and Klietman. In this paper instead of C_{3} we consider $K_{2, k}$ and seek a sharp upper bound for $r\left(K_{2, k}, G\right)$ over all graphs G with q edges. More specifically if $q \geqslant 2$, we will show that $r\left(C_{4}, G\right) \leqslant k q+1$ and that equality holds if $G \cong q K_{2}$ or K_{3}. Using this we will generalize this result for $r\left(K_{2, k}, G\right)$ when $k>2$. We will also show that for every graph G with $q \geqslant 2$ edges and with no isolated vertices, $r\left(C_{4}, G\right) \leqslant 2 p+q-2$ where $p=|V(G)|$ and that equality holds if $G \cong K_{3}$.

