How Ramsey theory can be used to solve Harary's problem for $K_{2,k}$

Chula Jayawardene

Department of Mathematics University of Colombo, Colombo Sri Lanka.

c_jayawardene@yahoo.com

Cecil C. Rousseau and Béla Bollobás

Department of Mathematics University of Memphis U.S.A.

January 8, 2019

Abstract

Harary's conjecture $r(C_3, G) \leq 2q + 1$ for every isolated-free graph G with qedges was proved independently by Sidorenko and Goddard and Klietman. In this paper instead of C_3 we consider $K_{2,k}$ and seek a sharp upper bound for $r(K_{2,k}, G)$ over all graphs G with q edges. More specifically if $q \geq 2$, we will show that $r(C_4, G) \leq kq + 1$ and that equality holds if $G \cong qK_2$ or K_3 . Using this we will generalize this result for $r(K_{2,k}, G)$ when k > 2. We will also show that for every graph G with $q \geq 2$ edges and with no isolated vertices, $r(C_4, G) \leq 2p + q - 2$ where p = |V(G)| and that equality holds if $G \cong K_3$.