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ABSTRACT 
 

Evaluation of risk of Invasive Alien Species (IAS) with uncertain and imprcise data is a challenging  
task. In the present work, mathematical model for risk assessment is developed by using interval  
multiple linear regression analysis in which mimic unceratin and imprecise data. Here both  
dependent  and  independent  variables  are  interval-valued. 
12 invasive attributes selected as model parameters. Proposed a new method find the solution of 
design matrix using interval least square method. Here obtained a dataset of 28 invasive plant 
species which contains single-valued observations of 12 parameters and invasion risk scores which 
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are obtained from National Risk Assessment. Using the dataset formed four interval input datasets. 
New method is proposed to find the estimates for interval regression coefficient using  interval least 
suqare method. The interval regression coefficents are estimated using four different  interval  input  
data  set. The quality of the approximated model is evaluted by average accuracy  ratio  and  the 
models are validated using well known six invasive  and  four non  invasive  species.  
The approximated model gives average accuracy ratio of 0.730852 along with data set 3 which is 
the highest among all data sets. Validation results show that the expected risk score of each plant  
species  from  National  Risk  Assessment  is within  the  approximated  risk  interval.  
Comparing the quality and the validation results, it is found that the approximated model along with 
data set 3 gives better predictions of risks of invasive alien species if its invasion is dominated by 
biological traits. 
 

 
Keywords: Interval multiple linear regression; interval least square; invasive alien species; biological 

traits. 
 
1. INTRODUCTION 
 
Numbers of Invasive Alien Species (IAS) are 
increasing rapidly worldwide, causing both 
environmental and economic damage. Many 
countries have highlighted the urgent need for 
rigorous and comprehensive risk assessment 
protocols for invasive alien species for prevention 
and control strategies. Screening procedures like 
risk assessments based on questionnaires have 
been developed in several parts of the world. 
Such assessments for alien plants need wide 
range of information of risk factors which define 
invasion risk of IAS.  But most of the risk factors 
which affect the invasiveness of species are 
accompanied with imprecision and uncertainty. 
Therefore it is very important to incorporate 
mathematical modeling techniques to risk 
assessments for handling the impression and 
uncertainty of data. This may give a better 
prediction of invasion risk of IAS. 
 
Linear regression is one of the fundamental 
models used to determine the relationship 
between dependent and independent variables. 
An extension of this model, namely multiple 
linear regression, is used to represent the 
relationship between a dependent variable and 
several independent variables [1]. These 
variables usually are single-valued. The need of 
interval-valued data may arise to mimic the 
imprecision and uncertainty for obtaining reliable 
approximations. The lower and upper bounds 
provide the boundaries of the interval-valued 
data. Therefore, the interval-valued data x  can 
be written by the pair of values x  and x   with 

x x≥  where x  and  x  denote the lower and 

upper bound respectively. This study is focused 

on developing a mathematical model to evaluate 
satisfactory interval approximations for risk of 
IAS using interval multiple linear regression. 
Here we propose a new estimation method using 
interval least square to estimate boundaries             
of interval regression coefficients. The 
approximated model is validated, to see whether 
the predictions are within a satisfactory level. 
 
2. INTERVAL MULTIVARIATE LINEAR 

REGRESSION 
 
2.1 Least Square  
 
Let us briefly discuss the least square method to 
approximate the multiple linear regression model 
for crisp input-output data. 
 
The multiple linear regression equation for p 
variables is as follows: 
 

0 1 1 2 2 ... ,      1, 2, ..., .i i i p ipy a a x a x a x i n= + + + + =
 

(2.1) 
 

 

where iy  is the predicted or expected value of 

the dependent variable, 1ix  through  ipx  are  p

distinct independent or predictor variables, and 

0a  through pa
 
are the estimated regression 

coefficients. The regression coefficients 

( ), 1, 2, ...,ja j p=  are determined by the normal 

equations which are obtained, in such a way that  

( )
2

0 1 1 2 2
1

ˆ...
N

i i p ip i
i

a a x a x a x y
=

+ + + + −∑
 
is minimal. 

The least square algorithm to find regression 
coefficient vector  a   is defined in [2] as follows: 
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Step 1: Differentiate ( )
2

0 1 1 2 2
1

ˆ...
N

i i p ip i
i

a a x a x a x y
=

+ + + + −∑
 

with respect to ja  for 1, 2, ...,j p=  where  .ja a∈
 

 
Step 2. Form the matrix 

                                                                                                                                                                                                                                                          

12 1

2

1

  

1

p

n np

x x

A

x x

⋅ ⋅ ⋅ 
 ⋅ ⋅⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅= ⋅
 ⋅ ⋅⋅ 
 ⋅ ⋅ ⋅                      (2.2)

 

 
and the column vector, 
 

[ ]1 2  . . . .nb y y y=
                                    (2.3) 

                                                           
Step 3. Suppose A  has full column rank, that is 
no column in A  can be written as a linear 
combination of other columns. Then the least 
square estimator a  is given by     
    

( ) 1T Ta A A A b
−

=                                      (2.4) 

                                                           
Next we define the interval multiple linear 
regression model for interval input-output data. 
  
2.2 Interval Multiple Linear Regression 

Model  
 
Here we consider the case of response variable, 
predictor variables and unknown model 
parameters as intervals. 
 
The functional form of the interval multivariate 
linear regression model is as follows: 
 

0 1 1 2 2    1, 2, ..., .i i i m imY a a x a x a x i n= + + + ⋅ ⋅ ⋅ + =% % % % % % % % (2.5)     

                            
Where iY%  is the interval response variable, 

,  0,1, ...,ijx j m=%  are the interval predictor 

variables, and ja% ’s are unknown interval 

regression coefficients. Below we define the 
concept of interval least square to estimate the 

ja%  in Eq. (2.5). 

 
2.3 Interval Least Square 
 
Let us denote ˆiy%  be the estimation of interval 

response variable .iy% We need to obtain  

,  0,1, ...,j j ma =%  which minimize the sum of 

squared distance ( )2

1
ˆ, .

n

i i
i

d y y
=
∑ %%  First of all let us  

define the absolute error of interval estimation as 
in [3]. 
 

Definition 2.1 [3]: Let interval ˆˆ ˆ,y y y=     be an 

estimation of an interval , .y y y=      The left and 

right absolute errors are ˆLE y y= −  and 

ˆ ,RE y y= −  respectively. The absolute error of 

the estimation is the sum of left and                 
right absolute errors, that is,

ˆˆ ,L RE E E y y y y= + = − + −  respectively.  

 
Using the Definition 1, we define sum of squares 
error (SSE) of interval-valued multiple linear 
regression system as follows: 
 
Definition 2.2 [4]:  Let U  be the set of n  
interval valued observations of an interval linear 

regression function ( )y h x=  i.e.   

 
 
According to the definition 1, we say that 

0
j ij

j m
a x

≤ ≤
∑ % %  is an interval least square estimation 

of  iy%  if the linear combination minimizes: 
 

2 2

1 1
,

n n

L R
i i

E E
= =

+∑ ∑
 

 
where 

                                                          

2

1 1 0
,

n n

L i j ij
i i j m

E y a x
= = ≤ ≤

= −∑ ∑ ∑
  
    

                 (2.6) 
 

and 

 

2

1 1 0
.

n n

R i j ij
i i j m

E y a x
= = ≤ ≤

= −∑ ∑ ∑
  

  
                 (2.7) 

 

2.4 Interval Arithmetic (ILS)   
 
While using ILS method, it is required to find the 
estimates for interval regression coefficients that 
minimize the sum of Eqs. (2.6) and (2.7). 
Therefore we need to use interval arithmetic to 
work with interval-valued data [5]. 
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Let [ ] [ ] [ ], ,  ,a a a b b b= =     be real compact intervals and o  is one of the basic operations  

‘additions’, ’subtraction’, ’multiplication’ and ‘division, respectively (for  real numbers) that is  

{ }, , , .∈ + − ⋅ ÷o
 

 

Then, [ ] [ ] [ ] [ ]{ }| , .a b a b a a b b= ∈ ∈o o  If  o   is ÷   then  [ ]0 .b∉
 

 
for the corresponding operations: 
 

[ ] [ ] [ ], ,a b a b a b+ = + +  

[ ] [ ] [ ], ,a b a b a b− = − −  

[ ] [ ] { } { }min , , , , max , , , ,a b a b a b a b a b a b a b a b a b⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    

[ ] [ ] { } { }min , , , , max , , , ,a b a b a b a b a b a b a b a b a b÷ = ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷    provided [ ]0 .b∉          

 
2.5 Proposed Estimation Method 
 
In this section, we are going to present a new 
estimation method to approximate the interval 
regression coefficients in interval multiple linear 
regression model. Here we consider the case of 
response variable, predictor variables and 
unknown regression coefficients intervals. 
 
The interval multiple linear regression model may 
be written as follows: 
 
 0 1 1 2 2    1, 2, ...,i i i m imY a a x a x a x i n= + + + ⋅ ⋅ ⋅ + =% % % % % % % %

 (2.8)
 

 
where iY%  is the interval response variable, 

,  0,1, ...,ijx j m=%  are the interval predictor 

variables, and  ja% ’s  are unknown interval 

regression coefficients. 
 
Let us denote the center values of interval 
regression coefficients [ , ] j ja a for 0,1, ...,j m=  

as .ma′  To find ma′ , first of all we need to 

construct the matrix A%  and b%  as in Eqs. (2.2) 
and (2.3). 
 

Let us take midA  and midb  as the midpoint 

matrices of A% , b%  respectively. One may note 

that all components in matrices midA  and midb  

are crisp values that is not intervals. If midA  is a  

full column rank matrix we can evaluate ma′  as 

below.   
   

( ) 1

mid mid mid. m
TA A ba

−
′ =

                                (2.9)
 

 
Now we consider 0jε >  a value which satisfies: 

 
,j j ja a ε′= −                                                 (2.10)   

 
,  for  1, 2, ..., .j j ja a j mε′= + =                       (2.11) 

 
If boundary values of ,iY%  ,ijx% and center values 

ma′  are non-negative then the lower and upper 

observed responses are satisfying the equations 
(2.12), (2.13) respectively: 
 

( ) ( )
( )

0 1 1 1 2 2 21 2min , min ,

min ,    1, 2, ...,

i ii ii

n in n in

y a a x a x a x a x

a x a x i n

= + +

+ ⋅ ⋅ ⋅ + =  (2.12) 

 

0 1 1 2 2      1,2,...,i i i n iny a a x a x a x i n= + + +⋅⋅ ⋅ + =
(2.13) 

 

where  ,, iji
y x  and  ja  indicate lower bounds of 

response variables, predictor variables and 
model parameters respectively. Similarly , ,i ijy x  

and ja  indicate upper bounds of response 

variables, predictor variables and regression 
coefficients respectively. The sign of  ja  can be 

changed depending on the values of .jε  

Therefore without knowing the exact jε  values, 

Eq. (2.12) cannot be computed as in Eq. (2.13). 

Let us denote [ ]ˆ ˆ,L Uy y  as the estimated interval 



 
 
 
 

Peiris et al.; BJAST, 16(1): 1-11, 2016; Article no.BJAST.25901 
 
 

 
5 
 

output, where ( )0
1

ˆ min ,j ij jL ij
j m

y a a x a x
≤ ≤

= + ∑
 
 
 

  

and 
0

ˆ .U j ij
j m

y a x
≤ ≤

= ∑
 
 
 

  

 

Here our aim is to find a subset of the [ ]ˆ ˆ,L Uy y  

due to the complexity of finding the lower 
boundaries for regression coefficients in Eq. 

(2.12).  Let us define [ ]ˆ ˆ,L Uy y′  as the subset of  

[ ]ˆ ˆ,L Uy y  where 0
1

ˆ .j ijL
j m

y a a x
≤ ≤

′ = + ∑
 
 
 

 One 

may note that the defined subset is differ only 

from the lower bound of set [ ]ˆ ˆ, .L Uy y
 

 

Now let us show that [ ] [ ]ˆ ˆ ˆ ˆ, ,L U L Uy y y y′ ⊆   if 

boundary values of ,iY% ,ijx%  and center values of  

ma′   are non-negative. 
 

For the case when 0,ja ≥  

0
1

ˆ ˆ j ijL L
j m

y y a a x
≤ ≤

′= = + ∑
 
 
 

 since ,ij ijx x  are 

non-negative values. 
 

Hence [ ] [ ]ˆ ˆ ˆ ˆ, , .L U L Uy y y y′ ⊆
 

 

Now consider the case when 0.ja <   Without 

loss of generality we may assume that 1 0a <   in 
Eq.  (2.12). 
 

Then it is clear that  1 1 ijija x a x<  since  ,ij ijx x   

are non-negative values and .ij ijx x<
 

 
By adding the remaining right hand terms for 
both sides of 1 1 ijija x a x<  we have 
 

       0a  +    

1 2 2 0 1 11

2 2

< 

, 1, 2,...,

i n in ii

i n in

a x a x a x a a x

a x a x i n

+ + ⋅ ⋅ ⋅ + +

+ + ⋅ ⋅ ⋅ + =
      (2.14) 

 

Hence ˆ ˆ .Ly y′<  It is to be noted that values of 

ˆUy  in these two cases are same. Therefore it is 

clear that [ ] [ ]ˆ ˆ ˆ ˆ, , .L U L Uy y y y′ ⊆  Similarly we can 

prove [ ] [ ]ˆ ˆ ˆ ˆ, ,L U L Uy y y y′ ⊆  for more than one 

0.ja <  One may note that the values of 

,  0,1, ...,ja j m∀ =  cannot be negative since the 

boundary values of iY%   and  ijx%  are non-

negative. 
 
Now we propose our new method to find the 
boundaries of interval regression coefficient of  
Eq. (2.8) as below.  
 
Using least square method defined in section 2.1 
we find estimates for 's  and  'sj jc c  of 

 

0 1 1 ... ,i m imi
y c c x c x= + + +                       (2.15) 

 

 0 1 1 ... ,i i m imy c c x c x= + + +                        (2.16) 

 
where ,  j j j j j jc a c aε ε= − = −  for 1, 2, ...,j m=   

which  minimizes  the  following 
 

2

1 1 0
,

N N

j ijL i
i i j m

E y c x
= = ≤ ≤

= −∑ ∑ ∑
  
  

  
           (2.17) 

 

2

1 1 0
.

N N

R i j ij
i i j m

E y c x
= = ≤ ≤

= −∑ ∑ ∑
  
  

                (2.18) 
 
One may note that, the proposed method can be 
applied to find the interval estimations for 
regression coefficients if the boundaries of 
Interval input-output data and center values of 
interval regression coefficients of Eq. (2.8) are 
non negative values. 
 

2.6 Accuracy Assessment of Approxima-
ted Model 

 
The quality of the approximation of 

0
,i j ij

j m
Y a x

≤ ≤
≈ ∑
 
 
 

% % %  can be examined by 

considering the overlap between approximated 

output Ŷ%  and expected output .Y%  The 
approximation would be better if the overlap 

between Ŷ%  and Y%  is considerably large. The 
accuracy ratio of an interval approximation is 
defined in [3] as below. 
 

Definition 2.3 [3]: Let ˆ ˆˆ[ , ]Y y y=%  be an 

approximation for the interval , .Y y y=   
%  The 

accuracy ratio of the approximation is  
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( )
( ) ( )

ˆ100%        if 

ˆˆ, [ , ]ˆ ˆ( , )     if  
ˆˆ, [ , ]

0           otherwise.

Y Y

w y y y y
Acc Y Y Y Y

w y y y y

=

∩
= ∩ ≠ ∅

∪




   


   



% %

% % % %

(2.19) 
 
where the function ()w  returns the width of an 

interval by taking the difference of upper and 
lower boundary points of the given interval. 
 
In this study, we consider the average accuracy 
ratio to assess the quality of an interval 

approximation on a set of N interval pairs ( , )i ix y  

qualitatively. 
 

For a set of N interval pairs ( , ),i ix y  the average 

accuracy ratio [4] of the approximation is defined 
as 
 

1

ˆ( , ( ))
* .

N

i i
i

Acc Y Y x
Acc

N
=
∑

=
% %

                       (2.20) 

  
The average accuracy ratio is a quality 
measurement in addition to the sum of squares 
of left and right errors defined in Eqs. (2.6) and 
(2.7). Maximizing the average accuracy ratio and 
minimizing the sum of squares are inter-
connected. The higher the average accuracy 
ratio is, smaller the sum of squares and the 
better the approximation. 
 

3. METHODOLOGY 
 

3.1 Selection of Parameters 
 
According to the view of biologists several factors 
affect the risk of invasive plant species such as 
its ecology, establishment, invasive potential, 
management aspects etc [6,7,8]. In conventional 
risk assessments these factors are usually 
considered. In this work we are mainly 

concerned about the biological traits related to 
invasive potential. The most important 12 
biological traits are selected as the parameters of 
the model from National Risk Assessment (NRA) 
for alien invaders in Sri Lanka. These parameters 
may be written as below: 
 

• Number of seeds per fruit (SF) 
• Annual seed production per m2 (ASR) 
• Viability of seeds (VS) 
• Long distance dispersal strength (LDD) 
• Vegetative reproduction strength (VRS) 
• Seed germination requirements (SGR) 
• Presence of physical defensive structures 

(PDS) 
• Formation of climbing or smothering 

growth habit (FCS) 
• Potential to be spread by human activities 

(HA) 
• Role of natural and manmade disturbances 

(NMD) 
• Alleopathic property (AP) 
• Existence of invasive races (IR) 

   
The dataset of known 28 invasive alien species 
is provided by the invasive specialists group 
attached to Ministry of Environment and 
Renewable Resources, Sri Lanka. It contains 
single-valued observations of 12 parameters and 
invasion risk scores which are obtained from 
NRA prepared by the Ministry of Environment 
and Renewable Resources, Sri Lanka. In the 
process of interval data formulation several 
interval input data sets have been formed by 
performing width adjustments in crisp data. Here, 
the nature of each parameter is assumed to form 
interval-valued data and keeping the essence of 
experts’ opinions for risk scores. Table 1 
presents some interval input data sets which 
contain interval-valued data of parameters and 
interval-valued risk scores (output observations). 
It may be noted that the lower and upper 
boundaries of interval-valued data are all non 
negative values. 

 
Table 1. Interval input data sets 

 

Data set Spread from center of interval-valued 
input data of parameters 

Spread from center of interval- valued 
risk scores 

Left Right 
1 ±0.4 3 3 
2 ±0.5  4 4   
3 ±0.4 5 5 
4 ±0.5 4 2 
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3.2 Model Formulation  
 

Here, the invasion risks score RInv  of a particular alien plant species is assumed to be linearly 

determined by the 12 biological traits: SF, ASR, VS, LDD, VRS, SGR, PDS, FCS, HA, NMD, AP and 
IR as 
 

0 1 2 3 4 5 6 7

8 9 10 11 12

( ) ( ) ( ) ( ) ( ) ( ) ( )

           ( ) ( ) ( ) ( ) ( )

RInv SF ASR VS LDD VRS SGR PDS

FCS HA NMD AP IR

θ θ θ θ θ θ θ θ
θ θ θ θ θ

= + + + + + + +

+ + + + +

% % % % % % % %%

% % % % %
                        (3.1) 

                    
where SF, ASR, VS, LDD, VRS, SGR, PDS, FCS, HA, NMD, AP, IR are all in intervals. 
 
First of all we have evaluated the center values of regression coefficients of (3.1) by following the 
procedures given in section 2. The results have shown that all the center values are non negative. 
 
Therefore, the interval coefficient parameters of model (3.1) have been estimated for each interval 
input data set by following the proposed estimation method defined in section 2. 
 

4. COMPUTATIONAL RESULTS 
 
4.1 Estimation of Regression Coefficients 
 
Tables 2 - 5 summarize the interval estimations of regression coefficients of model along with interval 
input data sets represented in Table 1. 
 

Table 2. Interval estimates for coefficients from data set 1 
 
Coefficient Estimates from data set 1 
ᶿ0

 [10.344, 11.814] 
ᶿ1

 [0.0183830220805138, 0.0183830220805161] 
ᶿ2

 [5.40300982218432×10-6, 5.40300982218483×10-6] 
ᶿ3

 [0.015545382605203, 0.015545382605205] 
ᶿ4

 [0.03859443996525, 0.03859443996527] 
ᶿ5

 [2.1499, 2.1499] 
ᶿ6

 [2.69472395393732, 2.69472395393747] 
ᶿ7

 [2.43003869540741, 2.43003869540748] 
ᶿ8

 [1.9773, 1.9773] 
ᶿ9

 [3.07114393755477, 3.07114393755487] 
ᶿ10

 [1.34943726439752, 1.34943726439766] 
ᶿ11

 [2.42486246924464, 2.42486246924466] 
ᶿ12

 [2.51326594838487, 2.51326594838489] 
 

Table 3. Interval estimates for coefficients from data set 2 
 

Coefficient Estimates from data set 2 
ᶿ0

 [10.3943, 11.745] 
ᶿ1

 [0.0183106933740867, 0.0183798813271578] 
ᶿ2

 [5.40142448033662×10-6, 5.40644416509869×10-6] 
ᶿ3

 [0.0155469931613369, 0.0155539824393268] 
ᶿ4

 [0.0391974418649532, 0.0414273985753972] 
ᶿ5

 [2.15044615933592, 2.15203670731178] 
ᶿ6

 [2.69230683186782, 2.69508724936171] 
ᶿ7

 [2.42696169733635, 2.43008821070789] 
ᶿ8

 [1.97708136819981, 1.97821672074128] 
ᶿ9

 [3.0650823787639, 3.07073314364203] 
ᶿ10

 [1.348870752105111.35368206335038] 
ᶿ11

 [2.42463624793798, 2.42513167844029] 
ᶿ12

 [2.51340075543958, 2.51512964449058] 
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Table 4. Interval estimates for coefficients from data set 3 
 

Coefficient Estimates from data set 3 
ᶿ0

 [9.65394, 12.34399] 
ᶿ1

 [0.0183830220805151, 0.01886] 
ᶿ2

 [5.40300982218465×10-6, 5.81×10-6] 
ᶿ3

 [0.0155453826052045, 0.01555] 
ᶿ4

 [0.0385944399652945, 0.07717] 
ᶿ5

 [2.14988781032716, 2.19395] 
ᶿ6

 [2.69472395393735, 2.71626] 
ᶿ7

 [2.43003869540741, 2.44489] 
ᶿ8

 [1.93169, 1.9773208835343] 
ᶿ9

 [3.0212, 3.07114393755476] 
ᶿ10

 [1.27264, 1.34943726439764] 
ᶿ11

 [2.42486246924465, 2.47308] 
ᶿ12

 [2.51326594838486, 2.5336] 
 

Table 5. Interval estimates for coefficients from data set 4 
 
Coefficient Estimates  from  data  set  4 
ᶿ0

 [8.3943, 11.745] 
ᶿ1

 [0.0183106933740868, 0.0183798813271578] 
ᶿ2

 [5.40142448033665×10-6, 5.40644416509869×10-6] 
ᶿ3

 [0.0155469931613369, 0.0155539824393267] 
ᶿ4

 [0.0391974418649532, 0.0414273985753901] 
ᶿ5

 [2.15044615933592, 2.15203670731174] 
ᶿ6

 [2.69230683186785, 2.69508724936171] 
ᶿ7

 [2.42696169733638 2.43008821070789] 
ᶿ8

 [1.97708136819981, 1.97821672074126] 
ᶿ9

 [3.06508237876395, 3.07073314364203] 
ᶿ10

 [1.34887075210511, 1.3536820633504] 
ᶿ11

 [2.42463624793801 , 2.42513167844029] 
ᶿ12

 [2.51340075543958, 2.51512964449059] 
 

4.2 Accuracy Assessment 
 
To measure the overall quality of the model, we 
have used average accuracy ratio as defined            
in (2.20). Table 6 summarizes the average 
accuracy ratios of the model incorporated each 
of data set given in Table 1. Figs. 1 and 2 show 
graphical comparison with expected and 
approximated lower and upper risk boundaries 
for 28 invasive plant species in the dataset. In 
these figures, symbol ‘*’,  ‘×’,  ‘ ’ and  ‘∆’ represent 
expected lower, expected  upper, approximated 
lower and approximated upper boundary of risk 
respectively. 
 

Table 6. Quality comparison 
 

Data  set Average  accuracy 
ratio 

1 0.60306 
2 0.679851 
3 0.730852 
4 0.603521 

 

4.3 Model Validation 
 
The model along with data sets in Table 1 has 
been validated by well known invasive and non 
invasive species of Sri Lanka. The data for these 
species have been gathered from the same 
source as we mentioned in section 3.1. The 
validation results are summarized in Tables 7 
and 8. 
 

5. DISCUSSION 
 

From Tables 2 - 5, one may observe that width 
spread of estimated interval regression 
coefficients are changing with respect to interval 
input data set. It can be seen that we get larger 
width spread in data set 3. Table 6 illustrates 
quality assessment of the approximated model 
with each data set. It is seen that approximated 
model gives average accuracy ratio of 0.730852 
along with data set 3 which is the highest among 
all data sets. The variations among average 
accuracy ratios can be seen from Figs. 1 - 4 
which depict the overlaps between estimated and 
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expected risk intervals. From validation results in 
Tables 7 and 8, one may see that the expected 
risk score of each plant species from National 
Risk Assessment is within the approximated risk 
interval. It is clear that present model gives better 
predictions from each data set. The species 
Hedychium gardnerianum with NRA score of 32 
is out of boundaries of estimated risk intervals in 

data set 1 to 3. However, lower boundaries of 
estimated risk intervals from input data set 2 and 
3 are more close to NRA score than the lower 
boundary of input data set 1. Therefore 
comparing the quality and validation results, the 
data set 3 should be incorporated to the 
approximated model for better prediction of risk 
of Invasive alien species. 

 

 
Fig. 1. Interval estimations for risk of IAS from data set 1 

 

 
Fig. 2. Interval estimations for risk of IAS from data set 2 

Table 7. Validation results 
 

Category of  
species 

Name of species NRA 
score (%) 

Approximated risk 
(Data set 1) 

Approximated risk 
(Data set 2) 

Invasive Austroeupatorium 
inulifolium 

62 [55.64757,64.58792] [54.75459, 65.50676] 

Panicum maximum 66 [63.8192, 72.75955] [62.9152, 73.66792] 
Cuscuta campestris 60 [54.81983, 63.76019] [53.92563, 64.67496] 
Pueraria montana 55 [54.0905, 63.03085] [53.17714, 63.93692] 
Acacia mearnsii 64 [57.09867, 66.03903] [56.1979, 66.94356] 
Magnfera indica 36 [33.57519, 42.51555] [32.67957, 43.40609] 

Non invasive Cassia fistula 32 [31.53293, 40.47328] [30.62525, 41.36012] 
Cissus rotundi 32 [30.55005, 39.49041] [29.65617, 40.38129] 
Hedychium 
gardnerianum 

32 [33.18063, 42.12099] [32.28433, 43.01214] 

Magnfera indica 32 [31.57978, 40.52013] [30.67473, 41.41821] 
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Fig. 3. Interval estimations for risk of IAS from data set 3 
 

 
 

Fig. 4. Interval estimations for risk of IAS from data set 4 
 

Table 8. Validation results 
 

Category of  
species 

Name of species NRA 
score (%) 

Approximated risk 
(Data set 3) 

Approximated risk 
(Data set 4) 

Invasive Austroeupatorium 
inulifolium 

62 [55.11774, 65.11774] [52.75459, 65.50676] 

Panicum  maximum 66 [63.28938, 73.28938] [60.9152, 73.66792] 
Cuscuta campestris 60 [54.29001, 64.29001] [51.92563, 64.67496] 
Pueraria montana 55 [53.56068, 63.56068] [51.17714, 63.93692] 
Acacia mearnsii 64 [56.56885, 66.56885] [54.1979, 66.94356] 
Magnfera indica 36 [33.04537, 43.04537] [30.67957, 43.40609] 

Non invasive Cassia fistula 32 [31.00311, 41.00311] [28.62525, 41.36012] 
Cissus rotundi 32 [30.02023, 40.02023] [27.65617, 40.38129] 
Hedychium 
gardnerianum 

32 [32.65081, 42.65081] [30.28433, 43.01214] 

Magnfera indica 32 [31.04996, 41.04996] [28.67473, 41.41821] 
 
6. CONCLUSION 
 
The interval multiple linear regression method 
has been applied for the first time to evaluate the 
risk of invasive alien species. New method to find 
the estimates for interval regression coefficient 

along with interval least square method is 
proposed. In order to apply the proposed 
estimation method, interval input-output data and 
center values of regression coefficients need to 
satisfy certain conditions. Four different interval 
input data sets have been incorporated to 
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approximate the model. To see whether the 
approximated model is within a satisfactory 
quality level, average accuracy ratio has been 
used. The model has been validated with each 
data set using well known invasive and non 
invasive species of Sri Lanka. Comparing the 
quality and the validation results, it is found that 
the approximated model along with data set 3 
gives better predictions of risks of invasive alien 
species if its invasion is dominated by biological 
traits. However we should explore to extend the 
proposed method to estimate the interval 
regression coefficients without considering the 
sign of boundaries of input-output data. Also, the 
model needs to be modified by incorporating the 
risk factors other than biological traits, e.g. 
ecology, establishment, management aspects 
etc to evaluate overall invasion risk. But the 
limited amount of available data on those factors 
sets serious constraints to evaluation of overall 
risk of IAS. 
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